CHEMOSELECTIVE REACTION OF ALLYLSILANES WITH α -CHLOROSULFIDES CONTAINING A CARBONYL GROUP Makoto Wada, Takahide Shigehisa, and Kin-ya Akiba* Department of Chemistry, Faculty of Science, Hiroshima University Higashisenda-machi, Hiroshima 730, Japan Abstract: Allylsilanes ($\underline{2}$) reacted with α -chlorosulfides ($\underline{1}$) containing a carbonyl group either at α , β , or γ position to substitute exclusively for the chlorine atom of $\underline{1}$, and the corresponding α -allylsulfides ($\underline{3}$) were obtained in high yields. Recently, allylsilanes or silyl enol ethers have been recognized as useful reagents for organic synthesis, $^{1)}$ especially for a regiospecific carbon-carbon bond formation. It is well known that allylsilanes or silyl enol ethers react with carbonyl compounds in the presence of Lewis acid to give the corresponding homoallyl alcohols $^{2)}$ or β -hydroxycarbonyl compounds. $^{3)}$ On the other hand, to our knowledge, the chemoselective reaction of these reagents with a carbonyl compound which contains another active functionality in a molecule is hitherto unknown except the following two examples. Chemoselective allylation of bifunctional molecules with allylsilanes catalyzed by Lewis acids was first reported by Ojima and Kumagai on α - and β -keto acetals. In these cases, allylsilanes reacted at the carbonyl group first with 1, 1-dimethoxypropane-2-one but at the acetal group first with 1, 1-dimethoxybutane-3-one. ⁴⁾ On the other hand, it was reported quite recently that silyl enol ethers reacted at the carbonyl group of α -acyl- α -chlorosulfides, whereas they did at the α -carbon atom of the α -chlorosulfides with an acyl group at β - or γ -position. ⁵⁾ Therefore, it is still challenging to device a method to introduce allyl or β -ketoalkyl group into a molecule while retaining its carbonyl group intact. Here we report chemoselective allylation of the α -carbon of α -chlorosulfides $(\frac{1}{2})^6$ to afford α -allylsulfides containing a carbonyl group in a molecule $(\frac{3}{2})$. The α -chlorosulfides ($\frac{1}{2}$) were prepared from the corresponding sulfides by treating with N-chlorosuccinimide. The figure of the formula of the formula of the subsequent reaction due to instability of these compounds. Allylsilanes ($\frac{2}{2}$) were added to α -chlorosulfides ($\frac{1}{2}$) in the presence of Lewis acids in dichloromethane under argon atmosphere and the results of these reactions are summarized in the Table. Phs $$(CH_2)_n$$ $(CH_2)_n$ $(CH_2$ The reaction of 1a with 2i was promoted by several Lewis acids, i.e., ZnBr_2 , ZnCl_2 , TiCl_4 , SnCl_4 , and AlCl_3 , to afford 3-phenylthiohex-5-ene-2-one (3a-i) as a sole product. No product due to the attack at the carbonyl group of 1a could be detected. Among these Lewis acids, SnCl_4 and AlCl_3 were found to be satisfactory for this reaction and the product (3a-i) was obtained in 90 and 91% yield, respectively. Tin tetrachloride was used for subsequent reactions and the products were obtained in high yields (80 - 90%) with α -keto substrates (1a, b, and c). Yields of allylated products were low for β - and γ -acetyl substrates, i.e., 39% for 3d-i and 30% for 3e-i, and it was necessary to employ lower temperature (ca. -50 °C) for the latter case. | 14516 | enemoses (2) | | | | | | |----------------------------------|-----------------------------|-------------------------|------------|---------------|-----|--------------------------| | α -Chlorosulfide (1) | Allylsilane
(2)
2i | Lewis acid | Conditions | | | Yield of 3 ^{b)} | | 1a | | | r.t., | 5.5h | | 75 ^{c)} | | 1a
≈ | 2i
∼ | $^{ m ZnCl}_2$ | r.t., | 24 | h | 81 ^{c)} | | 1a
≈ | 2 <u>i</u> | $TiCl_4$ | r.t., | 10 | min | 53 ^{c)} | | <u>1</u> a | <u>2i</u> | SnCl_4 | r.t., | 40 | min | 90 ^{c)} | | 1a
∼ | 2i
∼ | AlCl ₃ | r.t., | 30 | min | 91 ^{c)} | | 1b
≈ | 2i
∼ | SnCl_4 | r.t., | 20 | min | 91 ^{d)} | | <u>1</u> c | 2i
≈ | SnCl_4 | 0°C, | 20 | min | 87 ^{d)} | | <u>1</u> d | 2i
∼ | SnCl ₄ | r.t., | 20 | min | 39 ^{d)} | | ¹e
≈ | 2i
∼ | SnCl_4 | -45 -50°C, | 4 | h | 30 ^{d)e)} | | $\overset{1_{\mathbf{a}}}{\sim}$ | $\overset{2 ext{ii}}{\sim}$ | SnCl ₄ | r.t., | 20 | min | 80 ^{d)} | | 1 _a ∼ | 2ii
€ | $^{\mathrm{ZnBr}}_{2}$ | r.t., | 2 . 5h | | 50 ^{d)} | | 1 _b | 2ii
≈ | SnCl_4 | r.t., | 20 | min | 91 ^{d)} | | 1c
∼ | 2ii
∼ | SnCl_4 | 0 °C, | 20 | min | 78 ^{d)} | | la
≃ | 2iii
∼ | ${\tt SnCl}_4$ | -78 ℃, | 3 | h | 20 ^{d)} | | 1 <u>c</u> | 2iii | $SnCl_4$ | -78 °C, | 3 | h | 20 ^{d)} | Table Chemoselective Allylation of α -Chlorosulfides (1) a) All reactions were carried out using 1.0 mmol of α -chlorosulfide (1), 1.1 mmol of allylsilane (2), and 1.0 mmol of Lewis acid in 10 ml of CH₂Cl₂ under argon. The reaction mixture was treated with water followed by extraction with CH2Cl2. After removal of CH₂Cl₂, the crude product was purified by flash column chromatography on silica gel (Merck Art 9385). - b) Satisfactory IR, NMR, MS and elemental analyses data were obtained for these compounds. - c) Isolated yield using CH₂Cl₂ as eluent. - d) Isolated yield using a mixed solvent (n-hexane: ethyl acetate = 9:1) as eluent. - e) When this reaction was carried out at room temperature, the product (3e-i) was obtained in a 14% yield. Monosubstituted allylsilane (2ii) also reacted with α -keto substrates to afford the expected products (3a-ii, 3b-ii, and 3c-ii) in high yields as shown in the Table. On the other hand, when γ , γ -dimethylallylsilane (2iii) was reacted with 1a or 1c at room temperature or at 0 °C using SnCl₄, the reaction mixture was complicated and the expected product was not obtained at all. When the same reaction was carried out at -78 °C, 3a-iii or 3c-iii was obtained in a 20% yield, respectively, accompanied with some by-products. Chemoselectivity of the present reaction is apparently due to higher reactivity of the α -chlorosulfide moiety compared with that of the acetal moiety, although it is not yet clear why the reactivity of allylsilanes and silyl enol ethers are different for the same substrates ($\frac{1}{2}$). As is apparent from the structure, the present product (3) should be useful as a starting material for several synthetic purposes and such is currently underway. ## References and Notes - 1. a) I. Fleming, in "Comprehensive Organic Chemistry", Vol. 3, D. H. R. Barton and W. D. Ollis. Eds., Pergamon Press, 1979. - b) E. W. Colvin, "Silicon in Organic Synthesis", Butterworths, 1981. - 2. H. Sakurai, Pure 2 Appl. Chem., 54, 1 (1982). - 3. T. Mukaiyama, K. Banno, and K. Narasaka, J. Am. Chem. Soc., 96, 7503 (1974). - 4. I. Ojima and M. Kumagai, Chem. Lett., 575 (1978). - 5. R. Tanikaga, K. Miyashita, H. Sugihara, and A. Kaji, <u>J. C. S. Chem. Commun.</u>, 1106 (1981). - 6. a) Most recently, only one example of the reaction of 3-methyl-2-trimethylsilyl-3-butenoate with chloromethyl phenyl sulfide was reported. P. Albaugh-Robertson and J. A. Katzenellenbogen, Tetrahedron Lett., 23, 723 (1982). - b) Recently, the electrophilic reaction of α -acyl- α -chlorosulfides with aromatic compounds was reported. Y. Tamura, H. Shindo, J. Uenishi, and H. Ishibashi, <u>Tetrahedron Lett.</u>, <u>21</u>, 2547 (1981). - 7. H. Bohme and W. Krack, Ann. Chem., 51 (1977). - 8. Partial support of this work is acknowledged for Grant-in Aid for Special Project Research (No. 57218017) administered by Ministry of Education, Science and Culture. (Received in Japan 29 December 1982)